Electrical and Computer Engineering
  • About
    • Department
    • History
    • Facilities
    • Spotlight
    • Graduation
    • Employment
    • Faculty Awards
    • Staff Awards
  • News
    • News
    • Calendar
    • Social Media
  • People
    • Primary Faculty
    • Supporting Faculty
    • Staff
    • Postdocs
    • Visiting Scholars
  • Undergrad
    • Undergraduate
    • Computer Engineering
    • Electrical Engineering
      • REES Concentration
    • Undergraduate Research
    • Scholarships
    • Apply
  • Graduate
    • Graduate
    • Master’s
    • Doctoral
    • Graduate FAQ
    • Apply
  • Research
    • Research
      • Bioelectronics Engineering
      • Communications and Signal Processing
      • Computer Architecture and Systems
      • Control, Robotics, and Mechatronics
      • Electronic Circuits and Systems
      • Networking
      • Physical Electronics, Photonics & Magnetics
      • Power Electronics and Power Systems
    • Centers & Labs
    • Funded Research
    • Seminars
  • Engagement
    • Engagement
    • Advisory Board
    • Alumni
      • Alumni in Academia
      • ECE & Alumni Startups
      • Distinguished Alumni
    • Archived: Alumni Hall of Fame
    • Corporate
    • Student Organizations
  • Visit
Select Page
  • Videos
  • Social Media
  • Calendar
  • Spotlight
  • In the News
  • Newsletter
Funded Research

CNS Core: Medium: Thermodynamically-Driven Design of High Capacity, Practical DNA-Based Data Storage Systems

Sponsored by National Science Foundation (NSF)

James Tuck
Albert J. Keung

Project runs from 10/01/2019 to 09/30/2023
$1,216,000

Digital information is being generated in excess of 1 zettabyte (1021 bytes) per year worldwide. Existing information storage technologies are reaching major limitations in keeping pace. These limitations include unsustainable increases in the demand for: information capacity, physical storage space, raw materials, and energy to cool and maintain storage systems. DNA, a natural medium of information storage in biological systems, has garnered excitement and attention from both academic and industry groups as a potential next generation storage technology. DNA offers several advantages including a raw capacity of 1 zettabyte per 1 cubic centimeter. In comparison, state of the art electronic storage media would require 1000 cubic meters to store the same information. DNA also exhibits exceptional stability with a half-life of over a hundred years at ambient temperatures and requires minimal energy to maintain. Thus, DNA could be a transformative information storage medium. This project considers the design of a DNA-based data storage system from a thermodynamics perspective, allowing us to fine-tune interactions between DNA strands to achieve high capacity, random access, and search.

James Tuck

James Tuck

Professor

 Engineering Building II (EB2) 3066
  jtuck@ncsu.edu

Get the latest

Success!

Sign Up for ECE News

Visit

Apply

Values

Give

Department of Electrical and Computer Engineering

890 Oval Drive
3114 Engineering Building II
Raleigh, NC 27606

919.515.2336

  • Follow
  • Follow
  • Follow
  • Follow
  • Follow
  • Follow
Map of Centennial Campus
© NC State University. All rights reserved.

Webmaster  |   Accessibilty   |   Privacy   |   myECE