Electrical and Computer Engineering
  • About
    • Department
    • History
    • Facilities
    • Spotlight
    • Graduation
    • Employment
    • Faculty Awards
    • Staff Awards
  • News
    • News
    • Calendar
    • Social Media
  • People
    • Primary Faculty
    • Supporting Faculty
    • Staff
    • Postdocs
    • Visiting Scholars
  • Undergrad
    • Undergraduate
    • Computer Engineering
    • Electrical Engineering
      • REES Concentration
    • Undergraduate Research
    • Scholarships
    • Apply
  • Graduate
    • Graduate
    • Master’s
    • Doctoral
    • Graduate FAQ
    • Apply
  • Research
    • Research
      • Bioelectronics Engineering
      • Communications and Signal Processing
      • Computer Architecture and Systems
      • Control, Robotics, and Mechatronics
      • Electronic Circuits and Systems
      • Networking
      • Physical Electronics, Photonics & Magnetics
      • Power Electronics and Power Systems
    • Centers & Labs
    • Funded Research
    • Seminars
  • Engagement
    • Engagement
    • Advisory Board
    • Alumni
      • Alumni in Academia
      • ECE & Alumni Startups
      • Distinguished Alumni
    • Archived: Alumni Hall of Fame
    • Corporate
    • Student Organizations
  • Visit
Select Page
  • Videos
  • Social Media
  • Calendar
  • Spotlight
  • In the News
  • Newsletter
Funded Research

Unifying biological and environmental data streams to monitor emerging lepidopteran resistance to genetically engineered crops

Sponsored by US Dept. of Agriculture (USDA) - National Institute of Food and Agriculture

Anders Schmidt Huseth
George G. Kennedy
Alper Yusuf Bozkurt

Project runs from 09/01/2020 to 08/31/2024
$500,000

Accurate monitoring for changes in pest susceptibility to insecticidal toxins expressed in genetically engineered agronomic crops is currently an ineffective process limited by both scale and scope of deployment. Although long-term scientific and social change will be necessary to minimize pest resistance evolution, understanding near-term shifts in susceptibility through novel monitoring will also be essential to enable more effective resistance management strategies. To address this limitation on resistance monitoring, we propose to develop and deploy real-time pheromone-based sensor platforms to indicate patterns of lepidopteran pest activity in landscapes. We will use cotton bollworm (Helicoverpa zea Boddie) as a case study to develop and refine automated monitoring tools designed to detect shifts in pest susceptibility.

Alper Bozkurt

Alper Bozkurt

Professor

 Engineering Building II (EB2) 3070
  aybozkur@ncsu.edu
  Website

Get the latest

Success!

Sign Up for ECE News

Visit

Apply

Values

Give

Department of Electrical and Computer Engineering

890 Oval Drive
3114 Engineering Building II
Raleigh, NC 27606

919.515.2336

  • Follow
  • Follow
  • Follow
  • Follow
  • Follow
  • Follow
Map of Centennial Campus
© NC State University. All rights reserved.

Webmaster  |   Accessibilty   |   Privacy   |   myECE